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Abstract
We present the basic principles of non-local optics in connection with the
calculation of the Casimir force between half-spaces and thin films. At currently
accessible distances L, non-local corrections amount to about half a per cent,
but they increase roughly as 1/L at smaller separations. Self-consistent models
lead to corrections with the opposite sign as models with abrupt surfaces.

PACS numbers: 2.20.Ds, 42.50.Lc, 73.20.Mf, 78.68.+m

1. Introduction

The recent measurements of Casimir forces [1–5] and their comparison with theory have made
it necessary to consider in detail the electromagnetic response of the involved materials. In
this paper, we concentrate our attention on the spatial dispersion of the response which leads to
the so-called non-local effects. The problem of non-locality in connection with Casimir forces
was pointed out by Kats [6], who made a qualitative estimate of the effect and concluded
that it was necessary to specify the correct dependence of the dielectric function on both the
frequency and the wave vector. A more formal study was done by Heinrichs [7] and Buhl
[8] who studied the Van der Waals interaction taking into account spatial dispersion using a
hydrodynamic model for the electronic dynamics, showing that at large distances non-local
effects were negligible. More recently, the study of non-local effects in Casimir forces was
revived [9–13] showing the need for an accurate theoretical description of the system. It has
also been shown that the correct understanding of spatial dispersion is fundamental in order to
solve recent controversies regarding the behaviour of the Casimir force at finite temperatures
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[14, 15]. In this paper, we present a brief review of non-local effects, their incorporation in the
calculation of optical properties and their importance in Casimir forces at zero temperature,
with particular attention to the importance of a proper optical model of the materials.

2. Non-local media

In a linear and causal time-independent system, the most general relation between the electric
displacement �D and the electric field �E is

�D(�r, t) =
∫

d3r ′
∫ t

−∞
dt ′ε(�r, �r ′, t − t ′) · �E(�r ′, t ′), (1)

where ε(�r, �r ′, t − t ′) is the dielectric response tensor of the material. The response of the
system at time t depends on the excitation not only at t, but also at previous times t ′ < t , i.e.,
its response is not instantaneous. This fact, known as temporal dispersion, is closely related
to the well-known dependence of the index of refraction on frequency ω. The time integration
in equation (1) is readily recognized as a convolution, so that it may be eliminated through a
temporal Fourier transform,

�D(�r, ω) =
∫

d3r ′ε(�r, �r ′, ω) · �E(�r ′, ω). (2)

Equation (1) also shows that the response at a position �r might depend not only on the excitation
at the same point, but also on positions �r ′ within some neighbourhood � of �r . This non-local
dependence arises from the interaction among different parts of the system and is known as
spatial dispersion due to its resemblance to temporal dispersion. The size of the neighbourhood
� within which ε(�r, �r ′, t−t ′) is non-negligible is called the range of non-locality. It is typically
about an atomic distance, i.e., a few Å, as that is the only length scale that characterizes the
microscopic response of a material, although it may become orders of magnitude larger, for
example, in ultra-pure conductors at low temperatures. As the wavelength of light is typically
much larger than the range of non-locality, it is common to assume that �E(�r ′) ≈ �E(�r) within
�, so that we may take the electric field out of the spatial integration in equations (1) and (2),
yielding a local response �D(�r, ω) = ε(�r, ω) · �E(�r, ω), where ε(�r, ω) ≡ ∫

d3r ′ε(�r, �r ′, ω) is the
local dielectric response. An equivalent result is obtained if we replace ε(�r, �r ′, ω) by the local
kernel ε(�r, ω)δ(�r − �r ′) in equation (2). However, we remark that this approximation might
fail close to the surface of a material where its dielectric properties change rapidly, as some
components of the field have rapid variations in this region regardless of the frequency. Thus,
the detailed study of the electromagnetic screening at surfaces requires a non-local approach.
From the optical point of view, non-locality produces corrections to the optical coefficients,
such as the reflection amplitudes, of order �/λ where � is the characteristic length scale of
the selvedge region where non-locality has to be accounted for [16] and λ is the wavelength
of light. As � is typically a few Å, while λ is on the order of hundreds or thousands of Å,
non-locality may be safely ignored in many applications, although it has to be accounted for
in any precise calculation. Note that within a non-local material we have to include the full
tensorial character of the response even in the isotropic case, as the separation �r − �r ′ between
excitation and observation positions defines a particular direction in space.

Even within non-local media, equation (2) may be further simplified if the system is
translationally invariant, with a response that depends on the separation �r − �r ′, instead of
being a function of both �r and �r ′. In this case, equation (2) is also a convolution and may be
rewritten as a simple algebraic relation,

�D(�k, ω) = ε(�k, ω) · �E(�k, ω), (3)
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by taking spatial Fourier transforms with wave vector �k. Thus, spatial dispersion is frequently
identified with a wave-vector-dependent dielectric response. Examples of spatially dispersive
systems are excitonic semiconductors, where the spatial dispersion arises from the momentum
dependence of the excitonic energy. Another well-known non-local system is the conduction
electron gas of a conductor. Here the non-locality arises from the correlation hole that
surrounds every electron, so that excitation of one electron at some position affects the
response of the system within a neighbourhood on the order of the Thomas–Fermi screening
distance. Furthermore, an electron excited at one position may contribute to the response at a
distance of a mean free path away.

The identification of spatial dispersion with a wave-vector-dependent response has led to
some subtle but pervading confusion in the literature when discussing the optical properties
of non-local systems, as ε(�k, ω) is not even a well-defined quantity close to a surface. As
translational invariance is necessarily lost, the response of the system has to be written fully
as in equation (2), or be simplified at most to

�D(z, �Q,ω) =
∫

dz′ε(z, z′, �Q,ω) · �E(z′, �Q,ω), (4)

where we assumed that the surface is normal to the z axis and we took spatial Fourier
transforms with wave vector �Q along the x–y plane along which we may assume a 2D
translational invariance. Nevertheless, specific meaning can sometimes be given to ε(�k, ω)

close to a surface, but only under some additional simplifying assumptions about the nature of
the response, some of which will be discussed below. These assumptions and their approximate
nature should not be ignored.

3. Homogeneous systems

Within a homogeneous isotropic material, the only preferred direction is determined by �k, so
that the dielectric tensor may be written as

.ε(�k, ω) = εl(�k, ω)Pl(�k) + εt(�k, ω)Pt(�k) = εl(�k, ω)
�k �k
k2

+ εt(�k, ω)

(
1 −

�k �k
k2

)
, (5)

where Pl(�k) and Pt(�k) are the longitudinal and the transverse projectors. Thus, for longitudinal
and for transverse exciting fields, the response may be taken as scalar. However, the
longitudinal dielectric function εl(�k, ω) is in general different from the transverse dielectric
function εt(�k, ω), although they coincide among themselves and with the local dielectric
function in the k → 0 limit.

Substituting equation (5) into (3) and the resulting displacement into Maxwell’s equations
for non-magnetic systems, we obtain

�k × �E(�k, ω) = ω

c
�B, (6)

�k × �B(�k, ω) = −ω

c
(εl(�k, ω) �El(�k, ω) + εt(�k, ω) �Et(�k, ω)), (7)

where �Eα = Pα · �E (α = l, t). Taking as usual the vector product of equation (7) with �k and
substituting (6), we obtain the dispersion relation for transverse waves (Et �= 0)

k2 = ω2

c2
εt(�k, ω), (8)

which differs from the usual local result only by the explicit dependence of εt on �k. On the
other hand, taking the longitudinal projection of equation (7) we obtain that there might also



6326 R Esquivel-Sirvent et al

be free longitudinal fields (El �= 0) within the bulk, provided the wave vector and frequency
satisfy the longitudinal dispersion relation, given implicitly by

εl(�k, ω) = 0. (9)

Both equations (8) and (9) can provide more solutions within non-local media than the usual
two independent transverse modes that may be sustained by local materials.

The specific form of the dielectric function depends on the nature of the material, dielectric
or metallic, and the model used. For example, a simple model for semiconductors close to an
excitonic transition is that of a Lorentz oscillator [17],

εt(�k, ω) = εl(�k, ω) = ε∞ +
ω2

p

ω2
T (k) − ω2 − iγω

, (10)

with weight ω2
p, dissipation constant γ and with a wave-vector-dependent resonance energy

h̄ωT (k) = Eg − Eb + K that incorporates the energy required to create an electron–hole pair
given by the energy gap Eg of the semiconductor, the binding energy Eb of the exciton and its
kinetic energy K = h̄2k2/2M , where M is the excitonic mass. Here ε∞ is the contribution from
the other non-resonant transitions. An analogous simple model for metals is the hydrodynamic
model, with a local transverse response εt(ω) = 1−ω2

p

/
(ω2 + iγω) given by the Drude model

and a non-local longitudinal response

εl(�k, ω) = 1 − ω2
p

ω2 + iωγ − β2k2
. (11)

Here, the spatial dispersion arises from the fact that electrons are fermions and so Pauli’s
principle implies that it takes energy to increase their density. Therefore, for longitudinal
waves there is a restoring force proportional to β2 = 3v2

F

/
5 [18] in addition to the electrical

coupling to the electromagnetic field [19]. Here, vF is the Fermi velocity and β is related to
the compressibility of the metal.

More elaborate expressions may be obtained through a purely quantum-mechanical
approach using linear response theory. One of such approaches is the random phase
approximation (RPA), in which the response of the electron gas to the self-consistent oscillating
electric field is identified with the response of a gas of independent fermions to an external
perturbing field. The response may then be found from Kubo’s formulae through the density–
density and the current–current equilibrium correlation functions of the fermion gas, resulting
in the Lindhard longitudinal dielectric function [20–22]

εl(�k, ω) = 1 +
3ω2

p

k2v2
F

fl, (12)

where

fl = 1

2
+

1

8w

[
[1 − (w − u)2] ln

(
w − u + 1

w − u − 1

)
+ [1 − (w + u)2] ln

(
w + u + 1

w + u − 1

)]
, (13)

w = k/2kF, u = ω/kvF and kF is Fermi’s wave vector. Similar expressions have been obtained
for the non-local transverse dielectric function [11], including additional dissipation channels
[23].

4. Surface

It is important to emphasize that a dielectric response of the form ε(�k, ω) may only be
defined within the bulk of a translational invariant system. When a surface is present, this
invariance is broken along its normal direction and the full response ε(z, z′, �Q,ω) has to
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be employed. This may be obtained from microscopic surface screening calculations that
include the self-consistent confining potential [24]. Alternatively, simplified models may be
obtained by writing the dielectric response close to the surface in terms of the bulk response,
introducing simplifying assumptions about the interaction of electrons with the surface. The
latter calculations have the added difficulty of having to account for the possible excitation of
longitudinal and/or additional transverse waves given by all the real and complex solutions of
equations (8) and (9), beyond the usual two transverse modes of local optics.

As an example, consider p-polarized light incident on the surface of a metal described
by the hydrodynamic model (11). Within the bulk, there is one p-polarized transverse and
one longitudinal transmitted mode. Assuming that these modes may be extrapolated up to
the surface, which is taken as a sharp discontinuity in the dielectric properties, the optical
problem is reduced to the calculation of the amplitude of the reflected wave, the transmitted
transverse wave and the longitudinal wave. Thus, three boundary conditions are required.
Maxwell’s equations provide only two independent conditions, so that the problem seems
to be under-determined and additional boundary conditions (ABCs) of non-electromagnetic
origin are called for. The problem arises of course from the assumption that the response is
bulk-like up to the surface. Nevertheless, it is reasonable to assume that at the surface of a
non-local metal all of the components of all the fields ought to be continuous [25], not only the
usual field components E‖,H‖,D⊥ and B⊥, where ‖ and ⊥ denote parallel and perpendicular.
For instance, a discontinuity in the normal component of the electric field E⊥ would imply an
infinite charge density at the surface, which would unrealistically require an infinite amount of
energy according to Pauli’s principle. Using this ABC, one can obtain the reflection amplitude

rp = εtkv − kt + Q2(εt − 1)/kl

εtkv + kt − Q2(εt − 1)/kl
, (14)

which differs from the local result rp = (εtkv − kt)/(εtkv + kt) due to the excitation of
longitudinal waves at the surface. Here, kv, kt and kl are the normal components of the
wave vector of the incident wave in vacuum, of the transverse wave in the metal and of the
longitudinal wave, respectively, for given values of �Q and ω.

The above hydrodynamic result may be obtained as a particular case of the semi-classical
infinite barrier model (SCIB) [26]. In this model, it is assumed that there are two ways in
which an electron excited at �r ′ within a semi-infinite conductor occupying the half-space z > 0
may propagate and contribute to the response at �r: either it travels directly from �r ′ to �r or
else it first propagates to some point on the surface z = 0 where it is specularly reflected back
into �r . Assuming no electrons are inelastically nor diffusively scattered at the surface, and
ignoring the quantum interference between incident and reflected electronic wavefunctions,
the polarization at �r within the real semi-infinite conductor would be indistinguishable from
the polarization in a fictitious infinite system, provided in the latter we impose the specular
z ↔ −z symmetry. For each electron at z > 0 moving with speed −vz towards the surface,
there would be another electron in the fictitious system at z < 0 moving with speed vz > 0;
when the former reaches z = 0 and leaves the z > 0 half-space, the latter enters the half-space,
as if the former were specularly reflected. In the fictitious system, �E‖ must be an even function
of z while E⊥ must be an odd function. All other vectorial quantities must have the same
behaviour, while pseudo-vectors such as �B and �H must have the opposite parity. In particular,
the fields �H‖ and D⊥ are odd functions of z and are therefore discontinuous at the surface.
This may seem surprising until we note that this discontinuity applies only to the fields of the
fictitious, not of the real system, and that fictitious and real fields coincide only in the half-space
z > 0. According to Maxwell’s equations, the fictitious fields have a singular source given by
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a fictitious external surface current flowing at z = 0. By calculating the fields produced within
a homogeneous metal by such a singular current, we may obtain the surface impedances [27]

Zs ≡ −Ey(0+)

Hx(0+)
= i

π

ω

c

∫ ∞

−∞

dkz

(ω2/c2)εt − k2
, (15)

and

Zp ≡ Ex(0+)

Hy(0+)
= i

π

ω

c

∫ ∞

−∞

dkz

k2

[
k2
x

(ω2/c2)εl
+

k2
z

(ω2/c2)εt − k2

]
, (16)

which are independent of the unspecified magnitude and phase of the external current. As in
the real system there are no singularities and the fields are continuous across the boundary,
we can write Zs = −Ey(0−)/Hx(0−) and Zp = Ex(0−)/Hy(0−) in terms of the fields �E(0−)

and �H(0−) in vacuum, which may be written in terms of the incident and reflected waves, so
that we may solve for the reflection amplitudes

rs = Zs − Zvs

Zs + Zvs
, rp = Zvp − Zp

Zvp + Zp
, (17)

where Zvs = ω/(kvc) and Zvp = (kvc)/ω are the vacuum surface impedances.
It can easily be shown that Fresnel’s reflection amplitudes may be obtained by substituting

in equations (15)–(17) the local wave-vector-independent dielectric function. The excitation
of collective modes may be accounted for by substituting the dielectric function (11), yielding
the hydrodynamic result (14). A full quantum-mechanical bulk response such as Lindhard’s
formulae (12) may also be employed, accounting therefore also for electron–hole pair creation
and for Landau damping. Nevertheless, the above SCIB results are still not exact, as they
do not account for the microscopic nature of the surface, the shape of the confining surface
potential, the quantum oscillations of the equilibrium and the induced density close to the
surface.

Besides applying simplified models that approximate the surface response in terms of the
bulk response of the system, it is possible to obtain the microscopic response of the surface
ε(z, z′, �Q,ω) through the use of linear response theory. The most simple microscopic model
for metallic surfaces is the jellium model, in which electrons are added to a homogeneous
semi-infinite positive background. Using density functional theory in the local density
approximation (LDA), the self-consistent confining potential, electronic wavefunctions and
equilibrium density profile may be obtained through a solution of the Kohn–Sham equations
[28]. Through a generalization of the RPA known as the time-dependent LDA (TDLDA), the
surface susceptibility and dielectric response may be obtained [24]. Equation (4) is an integral
relation between �D and �E. As the width of the selvedge region is usually small [16] with
respect to the relevant optical wavelength, the integro-differential Maxwell’s equations may
be solved using a long-wavelength approximation [29]. For example, the reflection amplitude
for p-polarized light may be simply expressed as [30]

rp = r0
p

[
1 +

2ikvεt

1 + εtk2
v

/
Q2

d⊥

]
, (18)

where r0
p is the non-perturbed reflection amplitude given by Fresnel’s relations and

d⊥ ≡
∫

dz zδρ(z)∫
dz δρ(z)

(19)

is the position of the centroid of the distribution of charge δρ induced at the surface of a metal
in order to screen the normal component of the electric field. As an illustrative example,
d⊥ = −i/kl within the hydrodynamic model. It is then simply shown that equation (18) is
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consistent with (14) in the long-wavelength limit. Nevertheless, d⊥ has been calculated within
the TDLDA for many metals and its low frequency value has been tabulated [24].

5. Casimir forces between non-local media

In the previous sections, we have discussed the calculation of the electromagnetic response
and the optical properties of non-local systems. These may be immediately related to the
calculation of the Casimir force between spatially dispersive media by noting that the Lifshitz
formula, when written in terms of the reflection amplitudes,

F(L) = A
h̄c

2π2
Re

∫ ∞

0
dQQ

∫
q�0

dkv
k̃2

v

q

[
r(1)

s r(2)
s e2ik̃vL

1 − r
(1)
s r

(2)
s e2ik̃vL

+
r(1)

p r(2)
p e2ik̃vL

1 − r
(1)
p r

(2)
p e2ik̃vL

]
, (20)

is applicable to a wide class of systems, including homogeneous, inhomogeneous, semi-infinite
or finite, insulator or metallic, dissipationless or absorptive, and local or spatially dispersive
media [9–13, 31]. Here, k̃v = kv + iη where η → 0+ is a positive infinitesimal and the integral
over kv runs from iQ to 0 and then to ∞, so that q = ω/c remains real and positive, although the
integration trajectory may be manipulated into a more convenient one over the imaginary axis,
and we assumed the zero temperature case. The reason for the generality of equation (20) is
that α-polarized photons (α = s, p) that are not reflected coherently at the ath wall (a = 1, 2)

of the cavity with amplitude r(a)
α are lost from the cavity with probability 1− ∣∣r(a)

α

∣∣2
. However,

detailed balance in thermodynamic equilibrium implies that those photons are replaced by
similar photons through incoherent radiation from the walls or by being transmitted from the
vacuum region beyond the system, at the same rate as they are lost. Thus, both the coherent
and incoherent contributions to the field are determined by the same reflection amplitudes.
By using an ancillary system with the same optical coefficients as the real cavity walls, the
generality of equation (20) has been proved [9] for a wide class of isotropic systems, and it
has recently been generalized to anisotropic [32] and to fermion mediated interactions [33].

Non-local effects in the Casimir force can therefore be obtained quantitatively simply by
substituting the appropriate non-local reflection amplitudes in equation (20). For example,
in figure 1 we show the non-local corrections δF/F ≡ (|Fnl| − |Fl|)/|Fl| to the Casimir
force calculated with the hydrodynamic and the self-consistent jellium models [13], where the
subscripts nl and l denote non-local and local, respectively. The exactly solvable hydrodynamic
model predicts that non-locality decreases the force due to the excitation of additional waves
in the media [9]. At the closest distances for which Casimir forces have been measured,
L ∼ 50 nm, the non-local correction |δF/F | is about half a per cent. Similar results are also
obtained [11] from models that employ a more sophisticated bulk dielectric response, such as a
Lindhard-type dielectric function in the region of anomalous dispersion, including a correction
to account for inter-band transitions, but which nevertheless truncate the system abruptly at
the surface employing the SCIB or similar models. As in the hydrodynamic model, the force
is smaller than in the local case. The left panel of figure 1 also illustrates the accuracy of the
long-wavelength approximation (equations (18)). Contrariwise, the jellium model predicts
a non-local correction of a similar size but of the opposite sign (note the labelling), that is,
non-local effects increase the magnitude of the Casimir force [13]. The reason for this increase
is that in realistic models of metallic surfaces, the electronic density is not truncated abruptly
at the position of the nominal surface, but it decays smoothly to zero, extending beyond the
metal and into vacuum. Actually, the negative electronic charge outside the nominal boundary
and the compensating positive charge within the metal form the surface dipole that is the
source of the self-consistent potential that actually confines the electrons within the metal.
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Figure 1. Normalized non-local corrections δF/F to the Casimir force as a function of distance
L calculated for Au using the hydrodynamic model (left panel) and for free electron metals of
different densities corresponding to rs/aB = 2, 3, 4 and 5 using the self-consistent semi-infinite
jellium model (right panel), where aB is Bohr’s radius and rs is related to the electronic number
density n = 3/(4πr3

s ).

It turns out that the region just outside of the metal is much more polarizable than within the
metal, so that most of the screening takes place outside of the nominal surface. Thus, from
the electromagnetic point of view, the effective distance between two conductors is smaller
than the nominal distance, and therefore, the Casimir force is larger. Although the non-local
correction |δF/F | is relatively small at currently accessible distances, it grows roughly as L−1

and thus will become very important as smaller distances are explored. Figure 1 also shows
that the non-local correction increases with the electronic density.

The role of thin metallic coatings in the calculation of Casimir forces has also been studied
taking into account spatial dispersion [12] within the Kliewer and Fuchs formalism. It was
found that the main non-local contributions come from the coupling of the longitudinal guided
collective modes of the thin films with p-polarized light. Although it could have been expected
that non-local effects would be more important for thin films than for semi-infinite media, as
the width introduces an additional small length scale besides the relatively large wavelength,
they were found not to exceed about 7% at small separations. For current experimental setups
and separations, non-local corrections are on the order of 0.4%. The effect of thin films within
a local approximation has been explored by Lissanti et al [34].

6. Conclusions

We have reviewed the calculation of the optical properties of non-local systems emphasizing
some of the concepts that have frequently been a source of confusion. We have discussed
the meaning of a wave-vector-dependent dielectric response when surfaces are present, the
problem of additional boundary conditions and the continuity conditions for the fields. We
have shown some expressions which may be simply plugged into the Lifshitz formula in
order to calculate the Casimir force including non-local corrections. The effects of non-
locality are small at currently accessible distances but they might become very important
in future experiments that explore much smaller distances. Self-consistent theories produce
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a non-local correction which has the opposite sign as that predicted by other models, such
as the hydrodynamic model and, more generally, the SCIB model, in which the surface
is unrealistically assumed to be truncated abruptly. Thus, to obtain the correct sign, the
microscopic electronic density profile must not be disregarded. In this paper, we have
concentrated on the non-local corrections at zero temperature and we have not touched upon
the important and controversial issue of the thermodynamics of the Casimir force at large
separations, where it is believed that non-locality also plays an important role [14].
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